วันศุกร์ที่ 10 สิงหาคม พ.ศ. 2555



สมบัติของสารพันธุกรรม


DNA ควบคุมลักษณะทางพันธุกรรมได้อย่างไร?

จากการศึกษาโครงสร้างของ DNA ที่ผ่านมาพบว่าโครงสร้างของ DNA ประกอบด้วย
พอ ลินิวคลีโอไทด์สองสายที่มีความยาวนับเป็นพันเป็นหมื่นคู่เบส การเรียงลำดับคู่เบสมีความแตกต่างกันหลายแบบ ทำให้ DNA แต่ละโมเลกุลแตกต่างกันที่ลำดับและจำนวนของคู่เบสทั้งที่มีเบสเพียง 4 ชนิด คือ เบสA เบส T เบส C และ เบส G จึงเป็นไปได้ว่าความแตกต่างกันทางพันธุกรรมของสิ่งมีชีวิตอยู่ที่ลำดับและ จำนวนของเบสใน DNA หลักฐานที่ DNA เกี่ยวข้องกับการแสดงลักษณะทางพันธุกรรม
ใน พ.ศ.2500 วี เอ็ม อินแกรม (V.M.Ingram) ได้ทำการทดลองเปรียบเทียบฮีโมโกลบินของคนปกติกับคนที่เป็นโรคโลหิตจางชนิด ซิกเคิลเซลล์ ซึ่งเป็นโรคที่ถ่ายทอดโดยยีนด้อยตามกฎของเมนเดล เขาพบว่า ฮีโมโกลบินของคนที่มีเซลล์เม็ดเลือดแดงปกติจะแตกต่าง จากฮีโมโกลบินของคนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์ โดยการเรียงตัวของกรดอะมีโนต่างกัน 1 ตัว กล่าวคือกรดอะมีโนลำดับที่6 ของสายพอลิเพปไทด์สายบีตาของคนปกติเป็นกรดกลูตามิก(Glutamic acid) แต่คนที่เป็นโรคโลหิตจางชนิซิกเคิลเซลล์เป็นกรดอะมิโนชนิดวาลีน(Valine) โดยที่กรดอะมีโนตัวอื่นๆเหมือนกันหมด ดังนี้
  1. กรดอะมีโน 1 คนปกติจะเป็น วาลีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น วาลีน
  2. กรดอะมีโน 2 คนปกติจะเป็น ฮีสทีดีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น ฮีสทีดีน
  3. กรดอะมีโน 3 คนปกติจะเป็น ลิวซีน คนที่เป็นดรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น ลิวซีน
  4. กรดอะมีโน 4 คนปกติจะเป็น ทรีโอนีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็นทรีโอนีน
  5. กรดอะมีโน 5 คนปกติจะเป็น โพรลีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น โพรลีน
  6. กรดอะมีโน 6 คนปกติจะเป็น กรดกลูตามิก คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็นวาลีน
แม้จะมีความผิดพลาดเพียงเล็กน้อยในการเรียงลำดับกรดอะมีโน ในสายพอลิเพปไทด์ก็สามารถทำให้เกิดโรคทางพันธุกรรมได้
ความผิดที่เกิดจากการเรียงลำดับกรดอะมิโน เป็นหลักฐานว่า DNA ควบคุมลักษณะทางพันธุกรรม

การสังเคราะห์ DNA

วอตสันและคริกค้นพบโครงสร้างทางเคมีของ DNA ขั้นตอนต่อไปก็คือ การพิสูจน์และตรวจสอบว่าโครงสร้างของ DNA นี้ มีสมบัติเพียงพอที่จะเป็นสารพันธุกรรมได้หรือไม่ ซึ่งการที่จะเป็นสารพันธุกรรมได้นั้นย่อมต้องมีสมบัติสำคัญ คือ 
ประการแรก ต้องสามารถเพิ่มจำนวนตัวเองได้โดยมีลักษณะเหมือนเดิมเพื่อให้สามารถถ่ายทอดลักษณะทางพันธุกรรมจากรุ่นพ่อแม่ไปยังรุ่นลูกได้
ประการที่สอง สามารถควบคุมให้เซลล์สังเคราะห์สารต่างๆเพื่อแสดงลักษณะทางพันธุกรรมให้ปรากฏ
ประการที่สาม ต้อง สามารถเปลี่ยนแปลงได้บ้าง ซึ่งการเปลี่ยนแปลงที่เกิดขึ้นอาจก่อให้เกิดลักษณะพันธุกรรมที่ผิดแปลกไปจาก เดิมและเป็นช่องทางให้เกิดสิ่งมีชีวิตสปีชีส์ใหม่ๆขึ้น หลังจากวอตสันและคริกได้เสนอโครงสร้างของ DNA แล้วในระยะเวลาเกือบ 10 ปี  ต่อมา จึงสามารถพิสูจน์ได้ว่า DNA มีสมบัติเป็นสารทางพันธุกรรม วอตสันและคริกจึงได้รับรางวัลโนเบลจากผลงานการค้นพบโครงสร้าง DNA ใน ปี พ.ศ. 2505 นับว่าเป็นความก้าวหน้าที่สำคัญยิ่งทางด้านวิทยาศาสตร์ และเป็นจุดเริ่มต้นให้กับนักวิทยาศาสตร์ที่จะค้นคว้าในระดับโมเลกุลต่อไป วอตสันและคริกได้เสนอโครงสร้างของ DNA ว่าเป็น พอลินิวคลีโอไทด์ 2 สายพันกันบิดเป็นเกลียว ดังโครงสร้างของ DNA ตามแบบจำลองนี้ได้นำไปสู่กลไกพื้นฐานของการสังเคราะห์ DNA หรือการจำลองตัวเองของ DNA โดยนักวิทยาศาสตร์ทั้งสองได้พยากรณ์กลไกจำลอง DNA ว่าเกิดขึ้นได้อย่างไร
ในปี พ.ศ. 2496 วอตสันและคริกได้พิมพ์บทความพยากรณ์การจำลองตัวของ DNA ไว้ว่า ในการจำลองตัวของ DNA พอ ลินิวครีโอไทด์ 2 สาย แยกออกจากกันเหมือนการรูดซิบโดยการสลายพันธะไฮโดรเจนระหว่างเบส A กับ T และเบส C กับ G ที่ละคู่ พอลินิวคลีโอไทด์แต่ละสายทำหน้าที่เป็นแม่พิมพ์สำหรับการสร้างสายใหม่ มีการนำนิวคลีโอไทด์อิสระที่อยู่ในเซลล์เข้ามาจับกับ พอลินิวคลีโอไทด์สายเดิม โดยเบส A จับกับ T และเบส C จับกับ G  หมู่ฟอสเฟตของนิวคลีโอไทด์ อิสระจะจับกับน้ำตาลออสซีไรโบสของ DNA โดยวิธีนี้เรียกว่า DNA เรพลิเคชั่น ( DNA replication ) ทำให้มีการเพิ่มโมเลกุลของ DNA จาก 1 โมเลกุลเป็น 2 โมเลกุล DNA แต่ ละโมเลกุลมีพลลินิวคลีโอไทด์ สายเดิม 1 สาย และสายใหม่ 1 สาย จึงเรียกการจำลองลักษณะว่า เป็นแบบกึ่งอนุรักษ์ ( semiconservatiae ) ดังภาพ
การจำลองตัวเองของ  DNA
การจำลองตัวเองของ DNA
การจำลองตัวเองของ  DNA
การจำลองตัวเองของ DNA
การจำลองตัวเองของ  DNA
การจำลองตัวเองของ DNA  (DNA REPLICATION) 
DNA  สามารถเพิ่มจำนวนได้โดยการจำลองตัวเอง (self replication)
ซึ่งเป็นคุณสมบัติพิเศษที่สำคัญมากในการทำหน้าที่ถ่ายลักษณะทางพันธุกรรมจากสิ่งมีชีวิตรุ่นหนึ่งไปยังอีกรุ่นหนึ่ง การจำลองตัวของดีเอ็นเอเริ่มจากการคลายเกลียวออกจากกันแล้วใช้สายพอลินิวคลีโอไทด์สายใดสายหนึ่งใน 2 สายเป็นแม่พิมพ์ (template) ในการสร้างสายใหม่ขึ้นมา ซึ่งสุดท้ายดีเอ็นเอที่จำลองใหม่จะประกอบด้วยสายพอลินิวคลีโอไทด์สายเดิมและสายใหม่  นอกจากนี้ ดีเอ็นเอ  ยังทำหน้าที่เป็นแม่แบบของการสร้างสายอาร์เอ็นเอ  ดังที่ได้กล่าวมาแล้ว ซึ่งกระบวนการต่างๆ เหล่านี้จำเป็นต้องอาศัยเอนไซม์จำเพาะหลายชนิดในการควบคุมปฏิกิริยาที่เกิดขึ้น เช่น ดีเอ็นเอโพลิเมอเรส (DNA polymerase) อาร์เอ็นเอโพลิเมอเรส (RNA polymerase) เฮลิเคส (helicase) ไลเกส (ligase) เป็นต้น
การจำลอง ดีเอ็นเอ
การจำลอง ดีเอ็นเอ
เมื่อ DNA สองสายคลายเกลียวแยกออกจากกันDNA polymerasจะสังเคราะห์leading strand เป็นสายยาว โดยมีทิศทางจากปลาย 5, ไปยัง3, เรียกว่า การสร้างสาย leading strandDNA polymeras gxHodkiสังเคราะห์ DNA สายใหม่เป็นสายสั้นๆ (Okazaki fragment๗โดยมีทิศทาง 5, ไปยัง 3, จากนั้น DNA ligaseจะเชื่อมต่อ DNA สายสั้นๆให้เป็นDNA สายยาว เรียกว่า การสร้าง lagging strand

การจำลองตัวเองของ DNA ตามสมมติฐานของนักวิทยาศาสตร์มีดังนี้

1. แบบกึ่งอนุรักษ์ (semiconservative replication) เมื่อมีการจำลองตัวเองของ DNA แล้ว DNA แต่ละโมเลกุลมีพอลินิวคลีโอไทด์ สายเดิมและสายใหม่ ซึ่งเป็นแบบจำลองของวอตสันและคลิก
2 แบบอนุรักษ์ (conservative replication) เมื่อมีการจำลองตัวเองของ DNA แล้ว พอลินิวคลีโอไทด์ทั้งสองสายไม่แยกจากกันยังเป็นสายเดิม จะได้ DNA โมเลกุลใหม่ที่มีสายของโมเลกุลพอลินิวคลีโอไทด์สายใหม่ทั้งสองสาย
3. แบบกระจัดกระจาย (dispersive replication) เมื่อมีการจำลองตัวเองของ DNA จะได้ DNA ที่เป็นของเดิมและของใหม่ปะปนกันไม่เป็นระเบียบ
การจำลองตัวเองของ DNA
การจำลองตัวเองของ DNA

DNA กับการสังเคราะห์โปรตีน

โครงสร้างและชนิดของ RNA

RNA มีโครงสร้างคล้าย DNA ประกอบด้วยนิวคลีโอไทด์เรียงต่อกันด้วยพันธะฟอสโพไดเอสเทอร์เป็นโพลีนิวคลี โอไทด์ แต่องค์ประกอบนิวคลีโอไทด์แตกต่างกันที่น้ำตาลและเบส โดย น้ำตาลของ RNA เป็นไรโบส ส่วนเบสใน RNA มียูราซิล (u) มาแทนไทมีน(T)
RNA
RNA
RNA ในเซลล์มีปริมาณมากมาย มากกว่า DNA 5-10 เท่า หน้าที่หลักเกี่ยวข้องกับ กระบวนการสังเคราะห์โปรตีน RNA ในเซลล์ส่วนใหญ่เป็นสายเดี่ยว (single standed) เนื่องจาก RNA ต้องมีโครงสร้างสามมิติที่ถูกต้องสำหรับทำหน้าที่ภายในเซลล์ดังนั้น RNA อาจจะเสียสภาพได้ด้วยความร้อน และpHสูงๆ เช่นเดียวกับ DNA แต่โครงสร้างส่วนที่เป็นเกลียวเป็นช่วงสั้นๆเท่านั้น จึงทำให้เสียสภาพได้ง่ายกว่า DNA

ชนิดของ RNA

ภายในเซลล์มี RNA 3 ชนิด ดังนี้
  1. เมสเซนเจอร์อาร์เอ็นเอ หรือ เอ็มอาร์เอ็นเอ ( messenger RNA : mRNA) เป็นอาร์เอ็นเอที่ได้จากกระบวนการถอดรหัส ( transcription ) ของสายใดสายหนึ่งของดีเอ็นเอ ซึ่งจะทำหน้าที่เป็นรหัสพันธุกรรมที่ใช้ในการสังเคราะห์โปรตีน
    mRNA
    mRNA
  2. ทรานสเฟอร์อาร์เอ็นเอ หรือ ทีอาร์เอ็นเอ ( transfer RNA : tRNA) อาร์เอ็นเอชนิดนี้ผลิตจากดีเอ็นเอเช่นเดียวกัน ทำหน้าที่ในการนำกรดอะมิโนต่างๆ ไปยังไรโบโซม ซึ่งเป็นแหล่งที่มีการสังเคราะห์โปรตีน ในไซโทพลาซึม
    mRNA
    tRNA
    ที่มา http://www.kik5.com/images/bio/img/p6_10_clip_image002_0000.jpg
  3. ไรโบโซมอลอาร์เอ็นเอ หรือ อาร์อาร์เอ็นเอ (ribosomal RNA : rRNA ) อาร์เอ็นเอชนิดนี้ผลิตจากดีเอ็นเอโดยกระบวนการถอดรหัสเช่นเดียวกัน แต่ทำหน้าที่เป็นองค์ประกอบของไรโบโซมโดยอาร์เอ็นเอรวมกับโปรตีนกลายเป็น หน่วยของไรโบโซม
    t RNA
    r RNA

การสังเคราะห์ RNA

การสังเคราะห์ RNA จำเป็นต้องอาศัย DNA สายหนึ่งเป็นต้นแบบ ซึ่งมีขั้นตอนดังนี้
  1. พอลินิวคลีโอไทด์สองสายของดีเอ็นเอคลายเกลียวแยกจากกันบริเวณที่
    จะมีการสังเคราะห์ RNA
  2. นำนิวคลีโอไทด์ของ RNA เข้าจับกับเบสของ DNA แต่ใน RNA ไม่มีไทมีน(T)
    มียูราซิล (U) แทน
  3. การสังเคราะห์ RNA เริ่มจากปลาย 3’ไปยังปลาย 5’ของ DNA โมเลกุลของ RNA จึงเริ่มจากปลาย 5′ ไปยังปลาย 3′
  4. นิวคลีโอไทด์ของ RNA เชื่อมต่อกันโดยอาศัย เอนไซม์ ชื่อ อาร์เอ็นเอพอลิเมอเรส ( RNA polymerase)
ขั้นตอนการสังเคราะห์ RNA โดยมี DNA เป็นแม่พิมพ์นี้ เรียกว่า ทรานสคริปชัน(transcription)
การสังเคราะห์ RNA
การสังเคราะห์ RNA
การสังเคราะห์ RNA
การสังเคราะห์ RNA
การสังเคราะห์ RNA
การสังเคราะห์ RNA

รหัสพันธุกรรม

รหัสพันธุกรรม คือ ลำดับของเบสบน DNA ซึ่งถ่ายทอดไปยัง RNA ในการสังเคราะห์โปรตีน เบสใน DNA มีเพียง 4 ตัว ส่วนกรดอะมิโนมีอย่างน้อย 20 ชนิด ดังนั้นรหัสหนึ่ง ๆ จะต้องประกอบด้วยเบสอย่างน้อย 3 ตัว ประกอบกัน และจากการคำนวณรหัสหนึ่งมีเบส 3 ตัวจะได้รหัสจำนวนถึง 64 รหัสด้วยกัน ซึ่งมากเกินพอสำหรับกรดอะมิโนที่มีอยู่ในธรรมชาติ จากการทดลองทำให้ทราบว่ามีหลาย ๆ รหัสที่มีความหมายสำหรับกรดอะมิโนตัวเดียวกัน รหัสบน mRNA นี้เรียกว่า โคดอนซึ่งมีเบสคู่รวมกับเบสอิสระ บน tRNA ที่เรียกว่า แอนทิโคดอน
ตารางแสดงรหัสพันธุกรรม
ตารางแสดงรหัสพันธุกรรม
ตารางแสดงรหัสพันธุกรรม แบบวงกลม
ตารางแสดงรหัสพันธุกรรม แบบวงกลม

การสังเคราะห์โปรตีน


DNA ทำหน้าที่ในการกำหนดชนิดของโปรตีนที่เซลล์สังเคราะห์ขึ้นมาเพื่อนำไปใช้ใน กิจกรรมต่างๆ ภายในเซลล์ ลำดับเบสในโมเลกุลของ   DNA ของยีนหนึ่งจะเป็นตัวกำหนดการเรียงตัวของกรดอะมิโนชนิดต่างๆ ของโปรตีนที่จะสังเคราะห์ขึ้นมา
DNA แต่ละโมเลกุลแตกต่างกันที่ลำดับเบส ซึ่งมีเพียง 4 ชนิด คือ A  T  C  G  ถ้ามีนิวคลีโอไทด์ 2 โมเลกุลเรียงต่อกัน  ลำดับเบส  4 ตัว นี้จะแตกต่างกัน เท่ากับ 42 = 16 แบบได้แก่ AA  AT  TA  AC  CA  AG  GA  TT  TC  CT  TG  GT  CC  CG  GC  และGG  จำนวน 16 แบบนี้ ไม่เพียงพอที่จะเป็นรหัสให้แก่กรดอะมิโนซึ่งมีประมาณ 20 ชนิด ถ้ามีนิวคลีโอไทด์ 3 โมเลกุลเรียงต่อกัน  ลำดับเบส 4 ตัวนี้ จะแตกต่างกันเท่ากับ 43 = 64 แบบ ซึ่งเกินกว่าจำนวนชนิดของกรดอะมิโนที่มีอยู่
ใน พ.ศ. 2504 เอ็ม.ดับบลิว. ไนเรนเบิร์ก ( M.W.Nirenberg) และ เจ.เอ็ช. แมททัย ( J.H.  Matthei)  ชาวอเมริกัน  ได้ค้นพบรหัสพันธุกรรมแรก คือ   UUU ซึ่ง เป็นรหัสของกรดอะมิโนชนิด ฟินิลอะลานีน ( phenylalanine) และต่อมามีการค้นพบเพิ่มเติมขึ้นเรื่อยๆ จนกระทั่งใน พ.ศ. 2509 พบรหัสพันธุกรรมถึง 61 รหัสด้วยกัน เหลือเพียง 3 รหัส คือ UAA , UAG และ  UGA ซึ่งไม่พบเป็นรหัสของกรดอะมิโนใดๆ ภายหลังจึงพบว่า รหัสทั้งสามนี้ทำหน้าที่หยุดการสังเคราะห์โปรตีน  นอกจากนี้ยังพบว่า AUG ซึ่งเป็นรหัสของกรดอะมิโนชนิดเมไทโอนีน ( methionine ) เป็นรหัสตั้งต้นของการสังเคราะห์โปรตีนอีกด้วยการสังเคราะห์โปรตีนเป็น กระบวนการที่เกิดขึ้นในไซโทพลาซึมของเซลล์โดยมีออร์แกเนล์ ที่เกี่ยว ข้องคือไรโบโซม เมื่อDNA ภายในนิวเคลียส  สังเคราะห์ mRNA    ลำดับของ mRNA ซึ่งเป็นรหัสพันธุกรรมนี้ถูกกำหนดโดยลำดับเบสของDNA เรียก ขั้นตอนการสังเคราะห์mRNA ว่า การถอดรหัสพันธุกรรม  (Transcription)    mRNAจะถูกส่งออก มาที่ไซโทพลาซึม โดยmRNAจะนำรหัสพันธุกรรมไปสู่การ สังเคราะห์โปรตีน  โดยการทำงานของไรโบโซม ร่วมกับ tRNA ที่ทำหน้าที่ นำกรดอะมิโนมาเรียงต่อกันตามรหัสพันธุกรรม ของ mRNA   ไรโบโซมหน่วยเล็กจะเข้าไปจับกับmRNAก่อน ต่อจากนั้นtRNA โมเลกุลแรกนำกรดอะ มิโนเข้าจับกับ mRNA ในไรโบโซม แล้วไรโบโซมหน่วยใหญ่จึงจะเข้าจับ ต่อจาก นั้น tRNA โมเลกุลที่สองจะเข้าจับกับ mRNA อิกตำแหน่งหนึ่ง  จนกระทั่งไรโบโซมเครื่อนที่ไปพบรหัสที่ทำหน้าที่หยุดการสังเคราะห์โปรตีนไร โบโซม ก็จะแยกออกจากmRNA การสังเคราะห์โปรตีนจึงสี้นสุดลงและการสังเคราะแบบ นี้เรียกว่า  การแปลรหัสพันธุกรรม (Translation)
การสังเคาระห์โปรตีน
การสังเคราะห์โปรตีน
การสังเคาระห์โปรตีน
การสังเคราะห์โปรตีน


ไม่มีความคิดเห็น:

แสดงความคิดเห็น