วันศุกร์ที่ 10 สิงหาคม พ.ศ. 2555


พันธุศาสตร์และเทคโนโลยีทาง DNA

พันธุวิศวกรรม


พันธุวิศวกรรม (Genetic Engineering)

Genetic Engineering
Genetic Engineering
พันธุวิศวกรรม (genetic engineering) หมายถึง หมายถึง กระบวนการทางชีววิทยาที่เกี่ยข้องกับการตัดต่อยีนจากสิ่งมีชีวิตชนิดหนึ่งเข้ากับยีนของสิ่งมีชีวิตอีกชนิดหนึ่ง เพื่อให้ได้ยีนที่มีสมบัติตามที่ต้องการ และขยายยีนให้มีปริมาณมากพอที่จะนำไปทำให้ผลผลิตมีคุณภาพดีขึ้น และได้ปริมาณการผลิตสูงขึ้น ตามต้องการ สิ่งมีชีวิตที่ได้จากกระบวนการทางพันธุวิศวกรรมเรียกว่า สิ่งมีชีวิตดัดแปลงพันธุกรรม หรือ GMOs(genetically modified organisms)

ประโยชน์ของเทคโนโลยีชีวภาพ

  1. ด้านเกษตร
    การขยายพันธุ์และการปรับปรุงพันธุ์สัตว์และพืชโดย
    ใช้เ้เทคนิคต่า่างๆ
    1. การคัดเลือกพันธุ์ผสม
    2. การโคลนนิ่ง
    3. การเพาะเลี้ยงเนื้อเยื่อ
    4. การใช้พันธุวิศวกรรม
    5. การฝากถ่ายตัวอ่อน
    การถ่ายฝากตัวอ่อน (Embryo transfer)
    การถ่ายฝากตัวอ่อน
    การถ่ายฝากตัวอ่อน
    การย้ายฝากตัวอ่อน
    การย้ายฝากตัวอ่อน
    ประโยชน์การถ่ายฝากตัวอ่อน (Embryo Transfer)
    • ขยายพันธุ์ได้จำนวนมาก
    • ขยายพันธุ์ได้อย่างรวดเร็ว
    • ช่วยลดระยะเวลาและค่าใช้จ่ายในการขยายพันธุ์
    • ช่วยอนุรักษ์พันธุ์สัตว์ต่างๆที่ใกล้สูญพันธุ์
    ฯลฯ
  2. ด้านอุตสาหกรรม
    1. ผลผลิตจากด้านเกษตรกรรม
    2. การใช้จุลินท รีย์ และการปรับปรุงสายพันธุ์จุลินท รียรีย์์
  3. ด้านอาหาร
    เป็นผลพลอยได้จากด้านเกษตรกรรมและอุตสาหกรรม
  4. ด้านการแพทย์
    1. การผลิตฮอร์โมน การผลิตวัคซีน วิตามินและยาปฏิชีวนะที่มีคุณภาพดี
      ปลอดภัยและมีปริมาณที่มากพอสำหรับผู้ป่วย
    2. การตรวจสอบสภาวะพันธุกรรมของโรคต่างๆ จากการผลิตชิ้นส่วนของ
      ยีีน
    3. การแก้ไขภาวะผิดปกติและการรักษาโรคต่างๆ ที่ถ่ายทอดทางพันธุกรรม
      จากการทำาแผนที่ยีน การรักษาด้วยยีนหรือยีนบกาบำบัด                                                                                  

เทคโนโลยีพันธุวิศวกรรมพืช

ปัจจุบัน “เทคโนโลยีพันธุวิศวกรรมพืช” เป็นเครื่องมือสำคัญที่ใช้ในการปรับปรุงพันธุ์พืชให้มีลักษณะตามต้องการ จากสมัยก่อนที่ใช้การผสมพันธุ์พืชแบบดั้งเดิม ซึ่งต้องใช้ระยะเวลานานหลายสิบปี กว่าจะได้พันธุ์ที่ต้องการ แต่หลังจากมนุษย์ค้นพบและศึกษาจนเข้าใจโครงสร้างและหน้าที่ของสารพันธุกรรม หรือดีเอ็นเอ และยังค้นพบวิธีการถ่ายยีนเข้าสู่พืชได้ จึงสามารถสร้าง “พืชดัดแปลงพันธุกรรม” หรือ พืชจีเอ็ม (GM plant – Genetically Modified Plant) ได้สำเร็จ การปรับปรุงพันธุ์พืชให้มีลักษณะตามที่ต้องการจึงทำได้อย่างรวดเร็วและแม่นยำ
“พืชดัดแปลงพันธุกรรม” ได้รับการพัฒนามาอย่างต่อเนื่อง จนสามารถจำหน่ายในเชิงการค้าครั้งแรกในปี พ.ศ. 2537 ได้แก่ มะเขือเทศสุกช้า ซึ่งมีชื่อทางการค้าว่า มะเขือเทศเฟลเวอร์ เซเวอร์ จวบจนปัจจุบัน เทคโนโลยีพันธุวิศวกรรมเพื่อดัดแปลงพันธุกรรมของพืช มุ่งเน้นไปลักษณะพิเศษต่างๆ ของพืชที่ไม่สามารถเกิดขึ้นได้จากการปรับปรุงพันธุ์แบบเดิมๆ โดยแบ่งออกเป็น 5 กลุ่มใหญ่ คือ

พันธุวิศวกรรมธัญพืชและพืชดอก

ยุค แรกของเทคโนโลยีพันธุวิศวกรรมพืช เกิดขึ้นในบริษัทเอกชนเป็นหลัก โดยมีวัตถุประสงค์หลักเพื่อเพิ่มผลผลิต ควบคุมคุณภาพ และพัฒนาสายพันธุ์ให้มีลักษณะใหม่ๆ เช่น การต้านทานแมลงศัตรูพืช การต้านทานไวรัสศัตรูพืช หรือการทนทานต่อยาฆ่าแมลง
ใน ระยะ 10 ปีที่ผ่านมา งานด้านพันธุวิศวกรรมพืชมุ่งเน้นการปรับปรุงคุณภาพผลผลิต เช่น การพัฒนาพันธุ์ข้าวญี่ปุ่น ให้เป็นข้าวทองหรือโกลเดนไรซ์ ซึ่งมีสารโปรวิตามินเอสูง โดยใช้ยีนจากดอกแดฟโฟดิลและแบคทีเรีย หลังจากนั้นมีการทำโกลเดนไรซ์ 2  ในข้าวสายพันธุ์อินดิคา โดยใช้ยีนจากข้าวโพด  ปัจจุบัน มีการทำข้าวสาลี ข้าวบาร์เลย์ กล้วย มันสำปะหลัง และมันเทศที่มีวิตามินเอ วิตามินอีและแร่เหล็กมากขึ้น เพื่อแก้ปัญหาขาดแคลนธาตุอาหารของประชากรในกลุ่มประเทศโลกที่สาม
6DD21_Presentation1
ข้าวทองหรือโกลเดนไรซ์ พัฒนาจากข้าวพันธุ์ญี่ปุ่น ข้าวทองหรือโกลเดนไรซ์2 พัฒนาจากข้าวสายพันธุ์อินดิคา
ใน ส่วนของไม้ดอกไม้ประดับซึ่งมีมูลค่าสูง มีการศึกษาวิถีและกลไกของการเปลี่ยนสีดอกในพืชหลายชนิด พืชต้นแบบที่ใช้ในการศึกษา คือ พิทูเนีย และสแนปดรากอน โดยมีบริษัทฟลอริยีน และบริษัท ซันทอรีของญี่ปุ่นเป็นผู้นำในการวิจัยด้านนี้ และประสบความสำเร็จในการทำคาร์เนชั่นและดอกกุหลาบให้เป็นสีน้ำเงิน
ดอกคาร์เนชั่นดัดแปลงพันธุกรรมให้เป็นสีม่วง ของ บ.Florigene Flower   ดอกกุหลาบดัดแปลงพันธุกรรมให้เป็นสีม่วงของ บ.Suntory
ดอกคาร์เนชั่นดัดแปลงพันธุกรรมให้เป็นสีม่วง ของ บ.Florigene Flower ดอกกุหลาบดัดแปลงพันธุกรรมให้เป็นสีม่วงของ บ.Suntory

พันธุวิศวกรรมพืชพลังงาน

พันธุ วิศวกรรมเพื่อปรับปรุงพันธุ์พืชที่ผลิตสารให้พลังงาน เช่น ไบโอเอทานอล ไบโอดีเซล ไบโอก๊าซ ก๊าซไฮโดรเจน และไบโอโซลาเซลล์  เป็นความหวังใหม่ของการผลิตพลังงานทดแทน ซึ่งในระยหลัง ได้รับความสนใจอย่างมากจากนักวิทยาศาสตร์ทั่วโลก โดยมีการพัฒนา 2 แนวทาง ได้แก่
  1. การผลิตพืชที่ใช้เป็นวัตถุดิบให้ได้จำนวนมากขึ้น โดยพัฒนาพันธุ์พืชให้มีประสิทธิภาพในการสังเคราะห์แสง ลดอัตราการใช้ปุ๋ยและน้ำ และทนต่อสภาพดินต่างๆ เพื่อให้ปลูกได้หลายที่
  2. การปรับปรุงพันธุ์พืชให้มีแป้งหรือน้ำตาลที่หมักได้ง่ายขึ้น เช่น การปรับปรุงพันธุ์ข้าวโพดให้มีแป้งที่หมักเป็นแอลกอฮอล์ได้ง่าย  ในขณะเดียวกันสามารถใช้พันธุวิศวกรรมปรับปรุงสายพันธุ์จุลินทรีย์ให้มี ประสิทธิภาพในการหมักน้ำตาลจากพืชให้เป็นแอลกอฮอล์ได้ดีขึ้น
สำหรับ ประเทศไทย ซึ่งมีพืชพลังงานอยู่หลายชนิด เช่น มะพร้าว ปาล์มน้ำมัน มันสำปะหลัง อ้อย และสบู่ดำ การใช้พันธุวิศวกรรมเพื่อการปรับปรุงพันธุ์พืชเหล่านี้จึงทำได้หลายแนวทาง เช่น กระตุ้นให้มีการเจริญเติบโตได้รวดเร็ว ให้ผลผลิตสูง ทนแล้ง ทนสภาพดินเค็ม หรือ ดินที่เป็นกรด-ด่างได้ดี เป็นต้น

พันธุวิศวกรรมพืชเวชกรรม

พันธุ วิศวกรรมเพื่อผลิตพืชเวชกรรมกำลังมาแรง และมีแนวโน้มจะได้รับการยอมรับมากกว่าพืชอาหาร  ที่ผ่านมามีงานวิจัยในข้าวโพด ยาสูบ ข้าว และคาโนลา แต่เนื่องจากพืชเหล่านี้เป็นพืชอาหารด้วยซึ่งอาจมีข้อกังวลเกี่ยวกับการถ่าย ทอดยีนไปยังสายพันธุ์พืชที่ใช้เป็นอาหาร จึงมีการเสนอให้วิจัยในพืชอื่น เช่น อัลฟัลฟา แซฟฟลาเวอร์ ดั๊กหวีด และสาหร่าย การผลิตสารสำคัญทางการแพทย์ในพืชดัดแปลง
พันธุ กรรมมีข้อได้เปรียบหลายประการที่ทำให้เป็นที่นิยมในปัจจุบัน เช่น ราคาถูกกว่าการผลิตในยีสต์หรือแบคทีเรีย ราว 10–100 เท่า ขยายขนาดได้ง่าย ปลอดภัย ง่ายต่อการสกัดและการนำสารมาใช้
ใน ปี พ.ศ. 2548 มีการผลิตยาสูบที่มีตัวยาสำหรับรักษาโรคมะเร็ง นอกจากนี้ยังมีงานวิจัยอื่นๆ เช่น การผลิตยีนภูมิคุ้มกันในน้ำนมคนให้อยู่ในน้ำนมข้าว การใช้ยีนจากหญิงที่เป็น หมัน ซึ่งมีฤทธิ์ทำลายสเปิร์มมาผลิตในข้าวโพด เพื่อทำยาคุมกำเนิดใส่ในถุงยางอนามัย หรือการพัฒนาให้ข้าวโพดผลิตวัคซีนไวรัสตับอักเสบ
ขวา - Prof. Ralph Bock จาก Institute of Plant Biochemistry and Biotechnology ประเทศเยอรมัน กับ มะเขือเทศดัดแปลงพันธุกรรมให้มีวิตามินสูง และกำลังพัฒนามะเขือเทศดัดแปลงพันธุกรรม เพื่อใช้เป็นวัคซีนรับประทานได้ (edible vaccine)<br>ซ้าย - กล้วยดัดแปลงพันธุกรรมพัฒนาเพื่อให้สร้างวัคซีน
ขวา - Prof. Ralph Bock จาก Institute of Plant Biochemistry and Biotechnology ประเทศเยอรมัน กับ มะเขือเทศดัดแปลงพันธุกรรมให้มีวิตามินสูง และกำลังพัฒนามะเขือเทศดัดแปลงพันธุกรรม เพื่อใช้เป็นวัคซีนรับประทานได้ (edible vaccine)ซ้าย - กล้วยดัดแปลงพันธุกรรมพัฒนาเพื่อให้สร้างวัคซีน

พันธุวิศวกรรมพืชอุตสาหกรรม

สำหรับ งานพันธุวิศวกรรมในอุตสาหกรรมสิ่งทอนั้น ขณะนี้นักวิทยาศาสตร์จีนได้พยายามทำฝ้ายดัดแปลงพันธุกรรมให้มีใยสีฟ้าสำหรับ ทำผ้ายีนส์ ซึ่งจะช่วยลดมลพิษจากกระบวนการย้อมสียีนส์     จนถึงปัจจุบันสามารถทำฝ้ายใยสีเขียวได้แล้ว  นอกจากนี้ยังศึกษากลไกการสร้างใยฝ้าย และการควบคุมยีนที่ผลิตโพลีเมอร์บางอย่างเพื่อทำให้เสื้อปราศจากรอยย่น ผสมเข้าไปเพื่อทำความสะอาดได้ง่ายขึ้น หรือแม้กระทั่งในปี พ.ศ.2547 มีการศึกษาวิจัยในยาสูบให้สามารถสร้างโปรตีนของใยแมงมุมซึ่งมีความเหนียว เพื่อนำไปทำเสื้อกันกระสุน
ใน อุตสาหกรรมพลาสติกมีรายงานว่าสามารถทำให้ต้นยาสูบและต้นอะราบิดอบซิส สร้างเม็ดพลาสติกในเนื้อเยื่อของพืชได้ และในอเมริกามีการวิจัยดังกล่าวใน ข้าวโพดและคาโนลา แต่ปัญหาคือพืชบางชนิดไม่สามารถทนต่อการมีเม็ดพลาสติกภายในเซลล์ ทำให้พืชชะลอการเจริญเติบโต เช่น ยาสูบ ฝ้าย และป่าน แต่พบว่า ซูการ์บีท ข้าวโพด และคาโนลา ทนต่อการมีเม็ดพลาสติกภายในเซลล์ได้ ดังนั้นการเลือกชนิดของพืชจึงมีความสำคัญ สำหรับอุตสาหกรรมการทำกระดาษ ค่าใช้จ่ายส่วนใหญ่อยู่ที่การ  กำจัดลิกนิน นักวิทยาศาสตร์จึงพยายามตัดต่อยีนเพื่อลดปริมาณลิกนิน เช่น การทำยูคาลิปตัสที่มี    ลิกนินน้อยลง

พันธุวิศวกรรมพืชเพื่อสิ่งแวดล้อม

นอก จากการผลิตพืชต้านทางแมลงศัตรูพืชเพื่อลดการใช้สารเคมีแล้ว  ยังมีการวิจัยเพื่อผลิตข้าวโพดและถั่วเหลืองที่มีฟอสฟอรัสสูงและไฟเททต่ำ เพื่อใช้เป็นอาหารของสุกร เป็ด และไก่ ช่วยให้เกษตรกรไม่ต้องซื้อฟอสฟอรัสมาเป็นอาหารเสริม และลดปริมาณไฟเททที่มักถูกปล่อยลงแหล่งน้ำพร้อมกับมูลสัตว์ ก่อให้เกิดมลภาวะทางน้ำ  นอกจากนี้ยังมีการสร้างพืชกำจัดสารพิษ ที่สามารถดูดสารพิษมากักเก็บไว้ หรือเปลี่ยนสารพิษให้อยู่ในรูปที่ไม่เป็นพิษหรือเป็นพิษน้อยก่อนที่ปล่อยสู่ สิ่งแวดล้อม เช่น เหมืองตะกั่วในรัฐโคโลราโด มีการใช้ต้นอินเดียนมัสตาร์ดที่ได้รับการถ่ายยีนจากวัชพืช เพื่อให้เจริญเติบโตได้ดีและดูดซับสารตะกั่วได้มากขึ้น และยังมีการสร้างต้นยาสูบที่สามารถดูดสารทีเอ็นทีและอาร์ดีเอ็กซ์ ซึ่งเป็นวัตถุระเบิดได้
แนว โน้มการพัฒนาพืชดัดแปลงพันธุกรรม อาจแบ่งได้เป็น 2 ยุค ได้แก่ ช่วงปี พ.ศ.2533–2543 ที่เน้นการพัฒนาลักษณะทางการเกษตร เช่น ต้านทานโรค แมลง และสารกำจัดศัตรูพืช รวมถึงความทนทานต่อสภาวะที่ไม่เหมาะสม เช่น ทนเค็ม ทนแล้ง และช่วงปี พ.ศ.2543–2563 ที่เน้นการพัฒนาคุณภาพผลผลิตให้มีลักษณะที่ต้องการหลายประการในพืชชนิดเดียว เช่น ต้านทานทั้งแมลงและสารกำจัดวัชพืช รวมไปถึงเรื่องเวชภัณฑ์
ปัจจุบัน ทั่วโลกมีการปลูกพืชดัดแปลงพันธุกรรมเพิ่มขึ้นทุกปี โดยในปี พ.ศ.2546–2549 เพิ่มขึ้นเกือบ 20% จากการรวบรวมข้อมูลจาก 63 ประเทศ พบว่ามีงานวิจัยด้านพันธุวิศวกรรมในพืชอาหารและพืชเส้นใย ทั้งที่อยู่ระหว่างการทดลองและมีจำหน่ายแล้วทั้งสิ้น 57 ชนิด ประเทศที่เป็นผู้นำในการพัฒนาผลิตภัณฑ์ได้แก่ อเมริกา อาร์เจนตินา จีน แคนาดา และบราซิล สำหรับประเทศที่งานวิจัยมีความก้าวหน้ามากได้แก่ ออสเตรเลีย ยุโรปตะวันตก เม็กซิโก แอฟริกาใต้ และประเทศที่น่าจับตามองคือ อินโดนีเซีย อียิปต์ และอินเดีย ซึ่งกำลังพัฒนางานวิจัยด้านพันธุวิศวกรรมพืชอย่างมาก
สำหรับประเทศไทยมี งานวิจัยเพื่อการพัฒนาพันธุวิศวกรรมในพืชหลายชนิด เช่น มะละกอเพื่อให้ต้านทานต่อโรคจุดวงแหวนที่เกิดจากเชื้อไวรัส หรือ มะเขือเทศเพื่อให้ต้านทานต่อโรคใบหงิกเหลือง เป็นต้น อย่างไรก็ตามงานวิจัยเหล่านี้ยังไม่สามารถพัฒนาไปจนสำเร็จลุล่วงได้เนื่อง จากข้อจำกัดหลายประการ โดยเฉพาะอย่างยิ่งการไม่สามารถทดสอบพืชดัดแปลงพันธุกรรมในภาคสนามได้มา ตั้งแต่ปี  พ.ศ.2544 จึงเป็นที่น่าสนใจว่าประเทศไทยจะมีนโยบายและกลยุทธ์เกี่ยวกับพืชดัดแปลง พันธุกรรมไปในทิศทางใด จึงจะก้าวทันต่อการเปลี่ยนแปลงของเทคโนโลยีในโลกปัจจุบันได้

ไม่มีความคิดเห็น:

แสดงความคิดเห็น